

# 200G QSFP-DD to 2x 100G QSFP28 Duplex Breakout AOC PN: V2C-D2QyyyC-AA

#### **Product Overview**

Vitex V2C-D2QyyyC-AA is a parallel 200G SR8 based 8-lane QSFP28-DD to 2x100G SR4. The use and replacement of breakout AOC is simple and straightforward as it adopts the standard QSFP28-DD form factor and complies to MSA specifications. The product provides an onboard MCU that allows access to full monitoring and configuration data via the 2-wire Management Interface.

#### Features

- 200G-SR8 QSFP28-DD to 2x 100G-SR4 QSFP28 breakout
- Full duplex 25.78 Gb/s per channel
- 10 Gb/s operation with CDR bypass
- Up to 100m with OM3/OM4 fiber
- Single 3.3V power supply
- Power consumption 4W QSFP28-DD side
  - 2.5W QSFP28 side
- Digital Diagnostic Monitoring (DDM) support
- Commercial operating temperature: 0°C to +70°C
- LSZH cable
- Hot Pluggable QSFP-DD form factor, QSFP-DD MSA CMIS 4.0 compliant
- Compliant with RoHS2.0

#### Applications

- IEEE 802.3bs 200G-SR8 and IEEE 802.3bm 100G-SR4
- Data centers (Servers, Switches, Storages)
- Cell site router and server connectivity
- Proprietary HPC interconnects

#### **Ordering Information**

| Part Number    | Description                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------|
| V2C-D2QyyyC-AA | 200G-SR8 QSFP-DD to 2x 100G-SR4 QSFP28 Breakout AOC, yyym, DDM, C-<br>temp (yyy is cable length in meters) |
| V2C-D2Q003C-AA | 200G-SR8 QSFP-DD to 2x 100G-SR4 QSFP28 Breakout AOC 3m, DDM, C-temp                                        |



# **General Specifications**

| Para                        | Symbol    | Min | Typical | Max           | Unit |      |
|-----------------------------|-----------|-----|---------|---------------|------|------|
| Storage Temperature         |           | Ts  | -40     |               | 85   | °C   |
| Relative Humidity           |           | Rн  | 5       |               | 85   | %    |
| Supply Voltage              |           | Vs  | 0       |               | 4    | V    |
| Operating Case Temperature  |           | Tc  | 0       |               | 70   | °C   |
| Operating Supply Voltage    |           | Vcc | 3.13    | 3.3           | 3.47 | V    |
| Dewer Consumption           | QSFP28-DD | — Р |         |               | 4    | 144  |
| Power Consumption           | QSFP28    |     | P       |               |      | 2.5  |
| Data Rate                   |           | DR  | 25      | 5.78125±100pp | m    | Gb/s |
| Bit Error Rate <sup>1</sup> |           | BER |         |               | 5E-5 |      |

1. Pre-FEC Bit Error Ratio with a PRBS 2<sup>31-1</sup> test pattern

### Electrical – Transmitter

| Parameter                       | Symbol             | Min | Typical | Max                  | Unit |
|---------------------------------|--------------------|-----|---------|----------------------|------|
| Input Differential Impedance    | RIN                | 90  | 100     | 110                  | Ω    |
| Differential Data Input Voltage | V <sub>INP-P</sub> | 200 |         | 900                  | mV   |
| Modulation Format               |                    |     | NRZ     |                      |      |
| Transmit Disable Voltage        | V <sub>DIS</sub>   | 2   |         | VCCHOST              | V    |
| Transmit Enable Voltage         | V <sub>EN</sub>    | VEE |         | V <sub>EE</sub> +0.8 | V    |
| Transmit Fault Assert           | VFA                | 2   |         | VCCHOST              | V    |
| Transmit Fault De-Assert        | V <sub>FDA</sub>   | VEE |         | V <sub>EE</sub> +0.8 | V    |

### Electrical – Receiver

| Parameter                       | Symbol              | Min | Typical | Max                  | Unit |
|---------------------------------|---------------------|-----|---------|----------------------|------|
| Output Differential Impedance   | Rout                | 90  | 100     | 110                  | Ω    |
| Differential Data Input Voltage | V <sub>OUTP-P</sub> | 200 |         | 500                  | mV   |
| LOS Fault                       | VLOSF               | 2   |         | VCCHOST              | V    |
| LOS Normal                      | VLOSN               | VEE |         | V <sub>EE</sub> +0.8 | V    |



#### **Electrical Connector Layout**





### **Electrical Pin Definition for QSFP-DD**

| PIN# | Symbol  | Description                         |   |  |
|------|---------|-------------------------------------|---|--|
| 1    | GND     | Ground                              |   |  |
| 2    | Tx2n    | Transmitter Inverted Data Input     |   |  |
| 3    | Tx2p    | Transmitter Non-Inverted Data Input |   |  |
| 4    | GND     | Ground                              | 1 |  |
| 5    | Tx4n    | Transmitter Inverted Data Input     |   |  |
| 6    | Tx4p    | Transmitter Non-Inverted Data Input |   |  |
| 7    | GND     | Ground                              | 1 |  |
| 8    | ModSelL | Module Select                       |   |  |
| 9    | ResetL  | Module Reset                        |   |  |
| 10   | VccRx   | 3.3V Power Supply Receiver          | 2 |  |
| 11   | SCL     | 2-wire Serial Interface Clock       |   |  |
| 12   | SDA     | 2-wire Serial Interface Data        |   |  |
| 13   | GND     | Ground                              | 1 |  |
| 14   | Rx3p    | Receiver Non-Inverted Data Output   |   |  |
| 15   | Rx3n    | Receiver Inverted Data Output       |   |  |
| 16   | GND     | Ground                              | 1 |  |
| 17   | Rxip    | Receiver Non-Inverted Data Output   |   |  |
| 18   | RxIn    | Receiver Inverted Data Output       |   |  |
| 19   | GND     | Ground                              | 1 |  |
| 20   | GND     | Ground                              |   |  |
| 21   | Rx2n    | Receiver Inverted Data Output       |   |  |
| 22   | Rx2p    | Receiver Non-Inverted Data Output   |   |  |
| 23   | GND     | Ground                              |   |  |
| 24   | Rx4n    | Receiver Inverted Data Output       |   |  |
| 25   | Rx4p    | Receiver Non-Inverted Data Output   |   |  |
| 26   | GND     | Ground                              |   |  |
| 27   | ModPrsL | Module Present                      |   |  |
| 28   | IntL    | Interrupt                           |   |  |
| 29   | VccTx   | 3.3V Power Supply Transmitter       | 2 |  |
| 30   | Vccl    | 3.3V Power Supply                   | 2 |  |
| 31   | LPMode  | Low Power Mode                      |   |  |
| 32   | GND     | Ground                              |   |  |
| 33   | Тх3р    | Transmitter Non-Inverted Data Input |   |  |
| 34   | Tx3n    | Transmitter Inverted Data Input     |   |  |
| 35   | GND     | Ground                              |   |  |
| 36   | Txìp    | Transmitter Non-Inverted Data Input |   |  |
| 37   | Txln    | Transmitter Inverted Data Input     |   |  |
| 38   | GND     | Ground                              |   |  |
| 39   | GND     | Ground                              |   |  |
| 40   | Tx6n    | Transmitter Inverted Data Input     |   |  |
| 41   | Тх6р    | Transmitter Non-Inverted Data Input |   |  |
| 42   | GND     | Ground                              |   |  |



| 43 | Tx8n     | Transmitter Inverted Data Input                     |   |  |
|----|----------|-----------------------------------------------------|---|--|
| 44 | Тх8р     | Transmitter Non-Inverted Data Input                 |   |  |
| 45 | GND      | Ground 1                                            |   |  |
| 46 | Reserved | For Future Use                                      | 3 |  |
| 47 | VS       | Module Vendor Specific 1                            | 3 |  |
| 48 | VccRx    | 3.3V Power Supply Receiver                          | 2 |  |
| 49 | VS2      | Module Vendor Specific 2                            | 3 |  |
| 50 | VS3      | Module Vendor Specific 3                            | З |  |
| 51 | GND      | Ground                                              | 1 |  |
| 52 | Rx7p     | Receiver Non-Inverted Data Output                   |   |  |
| 53 | Rx7n     | Receiver Inverted Data Output                       |   |  |
| 54 | GND      | Ground                                              | 1 |  |
| 55 | Rx5p     | Receiver Non-Inverted Data Output                   |   |  |
| 56 | Rx5n     | Receiver Inverted Data Output                       |   |  |
| 57 | GND      | Ground                                              | 1 |  |
| 58 | GND      | Ground                                              | 1 |  |
| 59 | Rx6n     | Receiver Inverted Data Output                       |   |  |
| 60 | Rx6p     | Receiver Non-Inverted Data Output                   |   |  |
| 61 | GND      | Ground                                              | 1 |  |
| 62 | Rx8n     | Receiver Inverted Data Output                       |   |  |
| 63 | Rx8p     | Receiver Non-Inverted Data Output                   |   |  |
| 64 | GND      | Ground                                              | 1 |  |
| 65 | NC       | No Connect                                          | 3 |  |
| 66 | Reserved | For Future Use                                      | 3 |  |
| 67 | VccTxl   | 3.3V Power Supply Transmitter                       | 2 |  |
| 68 | Vcc2     | 3.3V Power Supply                                   | 2 |  |
| 69 | ePPS     | Precision Time Protocol (PTP) reference clock input | 3 |  |
| 70 | GND      | Ground                                              | 1 |  |
| 71 | Тх7р     | Transmitter Non-Inverted Data Input                 |   |  |
| 72 | Tx7n     | Transmitter Inverted Data Input                     |   |  |
| 73 | GND      | Ground                                              | 1 |  |
| 74 | Тх5р     | Transmitter Non-Inverted Data Input                 |   |  |
| 75 | Tx5n     | Transmitter Inverted Data Input                     |   |  |
| 76 | GND      | Ground                                              | 1 |  |

1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal- common ground plane.

2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 7. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000mA.

3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module.



#### **Pin Description – QSFP28**



### **Electrical Pin Definition – QSFP28**

| Pin | Symbol  | Description                                      |   |
|-----|---------|--------------------------------------------------|---|
| 1   | GND     | Transmitter Ground (Common with Receiver Ground) |   |
| 2   | Tx2-    | Transmitter Inverted Data Input                  |   |
| 3   | Tx2+    | Transmitter Non-Inverted Data Input              |   |
| 4   | GND     | Transmitter Ground (Common with Receiver Ground) | 1 |
| 5   | Tx4-    | Transmitter Inverted Data Input                  |   |
| 6   | Tx4+    | Transmitter Non-Inverted Data Input              |   |
| 7   | GND     | Transmitter Ground (Common with Receiver Ground) | 1 |
| 8   | ModSelL | Module Select                                    | 2 |
| 9   | ResetL  | Module Reset                                     |   |
| 10  | VccRx   | 3.3V Power Supply Receiver                       |   |
| 11  | SCL     | 2-Wire serial Interface Clock                    |   |
| 12  | SDA     | 2-Wire serial Interface Data                     |   |
| 13  | GND     | Transmitter Ground (Common with Receiver Ground) |   |
| 14  | Rx3+    | Receiver Non-Inverted Data Output                |   |
| 15  | Rx3-    | Receiver Inverted Data Output                    |   |
| 16  | GND     | Transmitter Ground (Common with Receiver Ground) | 1 |
| 17  | Rx1+    | Receiver Non-Inverted Data Output                |   |
| 18  | Rx1-    | Receiver Inverted Data Output                    |   |
| 19  | GND     | Transmitter Ground (Common with Receiver Ground) | 1 |
| 20  | GND     | Transmitter Ground (Common with Receiver Ground) | 1 |
| 21  | Rx2-    | Receiver Inverted Data Output                    |   |
| 22  | Rx2+    | Receiver Non-Inverted Data Output                |   |
| 23  | GND     | Transmitter Ground (Common with Receiver Ground) |   |



| 24 | Rx4-    | Receiver Inverted Data Output 1                    |   |
|----|---------|----------------------------------------------------|---|
| 25 | Rx4+    | Receiver Non-Inverted Data Output                  |   |
| 26 | GND     | Transmitter Ground (Common with Receiver Ground)   | 1 |
| 27 | ModPrsl | Module Present                                     |   |
| 28 | IntL    | Interrupt                                          | 2 |
| 29 | VccTx   | 3.3V Power Supply Transmitter                      |   |
| 30 | Vccl    | 3.3V Power Supply                                  |   |
| 31 | LPMode  | Low Power Mode                                     |   |
| 32 | GND     | Transmitter Ground (Common with Receiver Ground)   |   |
| 33 | Tx3+    | Transmitter Non-Inverted Data Input                |   |
| 34 | Tx3-    | Transmitter Inverted Data Input                    |   |
| 35 | GND     | Transmitter Ground (Common with Receiver Ground) 1 |   |
| 36 | Tx1+    | Transmitter Non-Inverted Data Input                |   |
| 37 | Tx1-    | Transmitter Inverted Data Input                    |   |
| 38 | GND     | Transmitter Ground (Common with Receiver Ground)   |   |

1. The module uses common ground (GND) for all signals and supply (power). All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. VccRx, VccI, and VccTx shall be applied concurrently, and may be internally connected within the module in any combination.

## **Mechanical Dimensions**





# **Revision History**

| Date       | Rev | Description                              |
|------------|-----|------------------------------------------|
| 09/23/2022 | 1.0 | Initial Release                          |
| 04/12/2023 | 2.0 | Updated Logo and Formatting              |
| 07/06/2023 | 2.1 | Minor Corrections to Logo and Formatting |
| 08/02/2023 | 2.2 | Updated Mechanical Diagrams              |
| 08/21/2023 | 2.3 | Corrected Specifications.                |

#### For more information

Vitex LLC 32 Mercer Street Hackensack, New Jersey 07601 (201) 296-0145 info@vitextech.com www.vitextech.com

