

200G QSFP-DD LR8 Optical Transceiver PN: VD-2CLR8CS-AA

Product Overview

VD-2CLR8CS-AA is an Eight-Channel, Pluggable, Fiber-Optic QSFP DD LR8 for 2 × 100 Gigabit Ethernet Applications. It integrates eight data lanes in each direction with 208Gbps bandwidth. Each lane can operate at 26Gbps up to 10km over G.652 single mode fiber. The electrical interface uses a 76 contact edge type connector. The optical interface uses duplex LC connector.

Features

- 8 channels full-duplex transceiver modules
- Transmission data rate up to 26Gbps per channel
- 8 x 26Gb/s DFB-based LAN-WDM Cooling transmitter
- 8 channels PIN ROSA
- Internal CDR circuits on both receiver and transmitter channels
- Support CDR bypass
- Low power consumption <7.5W
- Hot Pluggable QSFP DD form factor and Compliant with CMIS
- Up to 10km reach for G.652 SMF
- Duplex LC receptacles
- Built-in digital diagnostic functions
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant (lead free)

Applications

• IEEE 802.3ba 100GBASE-LR4

Ordering Information

Part Number	Description
VD-2CLR8CS-AA	200G QSFP28-DD LR8, 10km SMF, 1310nm, Duplex-LC, C-temp

General Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage (Maximum)	Vcc	-0.3		3.6	V
Input Voltage	Vin	-0.3		Vcc+0.3	V
Storage Temperature	Tst	-20		85	°C
Case Operating Temperature	Тор	0		70	°C
Humidity(non-condensing)	Rh	5		95	%
Supply Voltage (Recommended)	Vcc	3.13	3.3	3.47	V
Operating Case Temperature	Tc	0		70	°C
Data Rate Per Lane	fd		25.78125		Gbps
Humidity (Recommended)	Rh	5		85	%
Power Dissipation	Pm			7.5	W
Fiber Bend Radius	Rb	0.002		10	km

Optical – Transmitter

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1272.55	1273.54	1274.54		
	Ll	1276.89	1277.89	1278.89		
Lane Wavelength	L2	1281.25	1282.26	1283.27		
	L3	1285.65	1286.66	1287.68	nm	
	L4	1294.53	1295.56	1296.59		
	L5	1299.02	1300.05	1301.09		
	L6	1303.54	1304.58	1305.63		
	L7	1308.09	1309.14	1310.19		
SMSR	SMSR	30			dB	
Total Average Launch Power	PT			10.5	dBm	
Average Launch Power, each Lane	PAVG	-4.3		4.5	dBm	
OMA, each Lane	POMA	-1.3		4.5	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			5	dB	
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-2.3			dBm	
TDP, each Lane	TDP			2.2	dB	
Extinction Ratio	ER	4			dB	
RIN20OMA	RIN			-130	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	

VD-2CLR8CS-AA Product Specification

Eye Mask {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0	.4, 0.45, 0.25,	0.28, 0.4}	
Average Launch Power OFF Transmitter, each Lane	Poff		-30		

^{1.} Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.

Optical - Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Damage Threshold, each Lane	THd	5.5			dBm	1
Total Average Receive Power				10.5	dBm	
Average Receive Power, each Lane		-10.6		4.5	dBm	
Receive Power (OMA), each Lane				4.5	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-8.6	dBm	
Stressed Receiver Sensitivity (OMA), each Lane				-6.8	dBm	2
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			5.5	dB	
LOS Assert	LOSA		-18		dBm	
LOS Deassert	LOSD		-15		dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			31	GHz	
Condition	ns of Stress R	eceiver Ser	nsitivity Test (Note 3)		
Vertical Eye Closure Penalty, each Lane			1.8		dB	3
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane			0.47		UI	

^{1.} The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

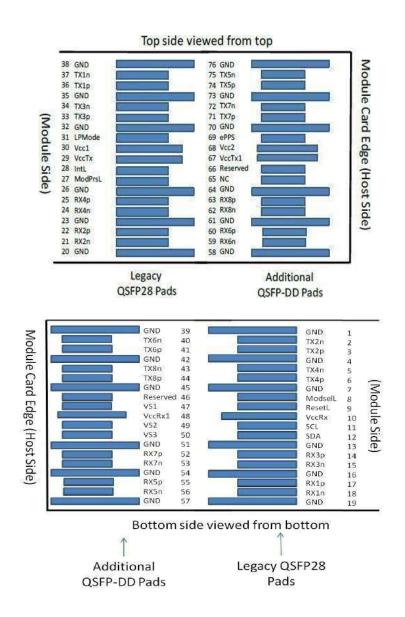
Electrical - Transmitter

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Differential Output Impedance	Zout	90	100	110	ohm	
Differential Output Voltage Amplitude	ΔVout	300		850	mVp-p	1
Output Logic Level High	VOH	Vcc-0.5		Vcc	V	
Output Logic Level Low	VOL	0		0.4	V	

^{1.} Differential output voltage amplitude is measured between RxnP and RxnN.

^{2.} Measured with conformance test signal at receiver input for BER = 1x10-12.

^{3.} Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.



Electrical - Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Differential Input Impedance	Zin	90	100	110	ohm	
Differential Input Voltage Amplitude	ΔVin	190		700	mVp-p	1
Input Logic Level High	VIH	2.0		Vcc	V	
Input Logic Level Low	VIL	0		0.8	V	

^{1.} Differential input voltage amplitude is measured between TxnP and TxnN.

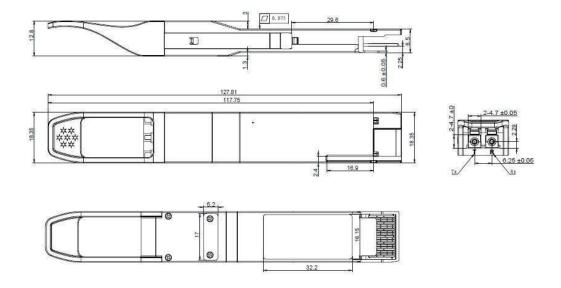
Electrical Layout

Electrical Pin Definition

PIN#	Logic	Symbol	Description	Remarks
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModselL	Module Select	
9	LVTTL-1	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13	•	GND	Ground	1
14	CML-C	Rx3p	Receiver Non-inverted Data Output	
15	CML-C	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-C	Rxlp	Receiver Non-inverted Data Output	
18	CML-C	Rxln	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-C	Rx2n	Receiver Non-inverted Data Output	
22	CML-C	Rx2p	Receiver Inverted Data Output	
23		GND	Ground	1
24	CML-C	Rx4n	Receiver inverted Data Output	
25	CML-C	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power supply transmitter	2
30		Vccl	+3.3V Power supply	2
31	LVTTL-I	LPMode	Low Power mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Txlp	Transmitter Non-inverted Data Input	
37	CML-I	Txln	Transmitter Inverted Data Input	
38		GND	Ground	1
39		GND	Ground	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	-
41	CML-I	Тх6р	Transmitter Non—Inverted Data Input	
42		GND	Ground	1

VD-2CLR8CS-AA Product Specification

43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Tx8p	Transmitter Non—Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	3
47		VS1	Module Vendor Specific 1	3
48		VccRx1	3.3V Power Supply	2
49		VS2	Module Vendor Specific 2	3
50		VS3	Module Vendor Specific 3	3
51		GND	Ground	1
52	CML-O	Rx7p	Receiver Non-inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	1
55	CML-O	Rx5p	Receiver Non-inverted Data Output	
56	CML-O	Rx5n	Receiver inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n	Receiver inverted Data Output	
60	CML-O	Rx6p	Receiver Non-inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver inverted Data Output	
63	CML-O	Rx8p	Receiver Non-inverted Data Output	
64		GND	Ground	1
65		NC	No Connect	3
66		Reserved	For future use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2
69	LVTTL-I	ePPS	Precision Time Protocol (PTP) reference clock input	3
70		GND	Ground	1
71	CML-I	Тх7р	Transmitter Non-inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Тх5р	Transmitter Non-inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1


QSFP-DD uses common ground (GND) for all signals and supply (power). All are comon within the QSFP-DD module and all module
voltages are referenced to this po-te-nial unless otherwise noted. Connect these directly to the host board signal- common ground
plane.

^{2.} VccRx, VccRx, VccI, Vcc2, VccTx and VccTxI shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector. VccRx, VccRx, VccRx, VccI, Vcc2, VccTx and VccTxI may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000mA.

^{3.} All Vendor Specific, Reserved and No Connect pins may be terminated within 50ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10K ohms and less than 100pF.

Mechanical Dimensions

Revision History

Date	Rev	Description
10/1/2021	1.0	Initial Release
05/17/2023	1.1	Updated Format and specification
02/17/2025	2.0	New branding guidelines

For more information

Vitex LLC

32 Mercer St

Hackensack, NJ 07601

(201) 296-0145 info@vitextech.com www.vitextech.com

