

# 400G QSFP56-DD FR4 Optical Transceiver PN: VD-4CFR4CS-AA

#### **Product Overview**

Vitex VD-4CFR4CS-AA is designed for 400G optical connections of up to 2km. The transceiver is a fully integrated optical transceiver modulated using a 4-level pulse amplitude modulation (PAM4) format that transmits at a data rate of 425Gbps over 4 lanes on CWDM wavelength grids, running at 106.25 Gbps each. They are compliant with the QSFP-DD MSA and 400GBASE-FR4 standards.

#### **Features**

- Compliant with IEEE Std 802.3cu 400GBASE-FR4
- Compliant with QSFP-DD MSA
- Compliant with CMIS4.0 Management interface specifications
- Duplex LC receptacles
- 4 x 106.25Gbps PAM4 cooled EML
- 8 x 53.125Gbps PAM4 electrical interface
- Transmission distance up to 2km
- Single 3.3V power supply
- Power consumption <8W</li>
- Commercial operating temperature:0°C to +70°C
- RoHS Compliant

#### **Applications**

400G BASE-FR4 Ethernet

## **Ordering Information**

| Part Number   | Description                                            |
|---------------|--------------------------------------------------------|
| VD-4CFR4CS-AA | 400G QSFP56-DD FR4, 2km SMF, 1310nm, Duplex LC, C-temp |



# **General Specifications**

| Parameter                    | Symbol | Min  | Typical        | Max  | Unit |  |
|------------------------------|--------|------|----------------|------|------|--|
| Storage Temperature          | Ts     | -40  |                | 85   | °C   |  |
| Relative Humidity            | RH     | 15   |                | 85   | %    |  |
| Supply Voltage (Maximum)     | Vcc    | -0.5 |                | 3.6  | V    |  |
| Supply Voltage (Recommended) | Vcc    | 3.13 | 3.3            | 3.47 | V    |  |
| Operating Case Temperature   | TC     | 0    |                | 70   | °C   |  |
| Data Rate PER Channel        |        |      | 53.125 ±100ppm |      | Gb/s |  |
| Modulation Format            |        |      | PAM4           |      |      |  |

# Optical - Transmitter

| Para                                       | Symbol                    | Min      | Typical    | Max    | Unit   | Remarks |   |
|--------------------------------------------|---------------------------|----------|------------|--------|--------|---------|---|
|                                            |                           |          | 1264.5     |        | 1277.5 |         |   |
| Lane wavelengths                           | λ                         | 1284.5   |            | 1297.5 | nm     | 1       |   |
| Larie wavelerights                         |                           | λ        | 1304.5     |        | 1317.5 | nm      | l |
|                                            |                           |          | 1324.5     |        | 1337.5 |         |   |
| Side-mode suppression ro                   | atio                      | SMSR     | 30         |        |        | dB      |   |
| Total Average launch pow                   | ver                       | Pr       |            |        | 9.3    | dBm     |   |
| Average launch power, ea                   | ch lane                   | Р        | -3.3       |        | 3.5    | dBm     |   |
| Outer Optical Modulation                   | For TDECQ < 1.4dB         | OMAouter | -0.2       |        | 3.7    | dBm     |   |
| Amplitude, each lane                       | For 1.4 < TDECQ <3.9dB    | OMAGULEI | -1.6+TDECQ |        | 3.7    | dBm     |   |
| Difference in launch powe (OMA outer)      | r between any two lanes   |          |            |        | 4      | dB      |   |
| Transmitter and dispersion PAM4, each lane | n penalty eye closure for | TDECQ    |            |        | 3.4    | dB      |   |
| Transmitter eye closure for                | r PAM4(TECQ), each lane   | TECQ     | _          | -      | 3.4    | dB      | - |
| TDECQ-TECQ                                 |                           |          |            | 2.5    | dB     |         |   |
| Extinction Ratio                           | ER                        | 3.5      |            |        | dB     |         |   |
| Average launch power of                    | Poff                      |          |            | -16    | dBm    |         |   |
| Optical Return Loss Tolera                 | nce                       | ORL      |            |        | 17.1   | dB      |   |
| Transmitter reflectance                    |                           |          |            |        | -26    | dB      |   |

<sup>1.</sup> The typical wavelengths are compliant with 1310nm CWDM wavelength grids.



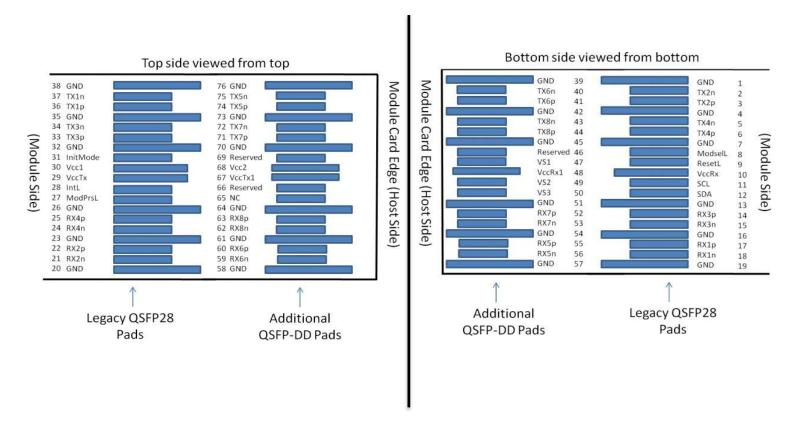
# Optical – Receiver

| Parameter                                |                    | Symbol | Min    | Typical | Max     | Unit | Remarks |
|------------------------------------------|--------------------|--------|--------|---------|---------|------|---------|
|                                          |                    |        | 1264.5 |         | 1277.5  |      |         |
| I am a vyavyala natha                    | λς                 | 1284.5 |        | 1297.5  |         |      |         |
| Lane wavelengths                         |                    | λ      | 1304.5 |         | 1317.5  | nm   |         |
|                                          |                    |        | 1324.5 |         | 1337.5  |      |         |
| Average Receiver Power, each Iane (Pavg) |                    |        | -7.3   |         | 3.5     | dBm  |         |
| Receiver Overload (Pavg)                 | PoL                | 4.4    |        |         | dBm     |      |         |
| Damage Threshold (Pavg)                  |                    |        | 5.4    |         |         | dBm  |         |
| Receive power, each lane (C              | DMA outer)         | OMA    |        |         | 3.7     | dBm  |         |
| Receiver Sensitivity each                | for TECQ<1.4dB     |        |        |         | -4.6    | dBm  | 1       |
| lane (OMA outer)                         | for 1.4≤TECQ≤3.4dB |        |        |         | -6+TECQ | dBm  | 1       |
| LOS De-Assert                            |                    | LOSD   |        |         | -10     | dBm  |         |
| LOS Assert                               |                    | LOSA   | -16    |         |         | dBm  |         |
| LOS Hysteresis                           |                    |        | 0.5    |         |         | dB   |         |

<sup>1.</sup> Measured with PRBS31Q test pattern, 53.125GBd, PAM4, BER<2.4E-4.

#### **Electrical – Transmitter**

| Parameter                     | Symbol               | Min | Typical | Max  | Unit              | Remarks |
|-------------------------------|----------------------|-----|---------|------|-------------------|---------|
| Module Supply Current         | Icc                  |     |         | 2.55 | Α                 |         |
| Power Dissipation             | PD                   |     |         | 8.0  | W                 |         |
| Input Differential Impedance  | Z <sub>IN</sub>      |     | 100     |      | Ω                 |         |
| Differential Data Input Swing | V <sub>IN, P-P</sub> | 180 |         | 900  | mV <sub>P-P</sub> |         |


### **Electrical - Receiver**

| Parameter                      | Symbol                | Min | Typical | Max | Unit              | Remarks |
|--------------------------------|-----------------------|-----|---------|-----|-------------------|---------|
| Output Differential Impedance  | Zo                    |     | 100     |     | Ω                 |         |
| Differential Data Output Swing | V <sub>OUT, P-P</sub> | 300 |         | 850 | mV <sub>P-P</sub> | 1       |
| Transition Time (20% to 80%)   | Tr,T <sub>f</sub>     | 9.5 |         |     | ps                |         |

<sup>1.</sup> Internally AC coupled but requires an external 100  $\!\Omega$  differential load termination.



## **Electrical Connector Layout**



#### **Electrical Pin Definition**

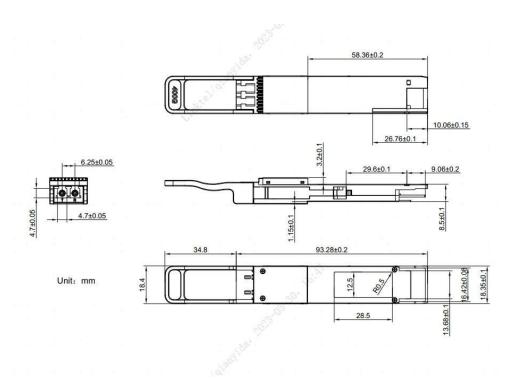
| PIN# | Symbol  | Description                          | Remarks |
|------|---------|--------------------------------------|---------|
| 1    | GND     | Ground                               | 1       |
| 2    | Tx2n    | Transmitter Inverted Data Input      |         |
| 3    | Tx2p    | Transmitter Non-Inverted Data output |         |
| 4    | GND     | Ground                               | 1       |
| 5    | Tx4n    | Transmitter Inverted Data Input      |         |
| 6    | Tx4p    | Transmitter Non-Inverted Data output |         |
| 7    | GND     | Ground                               | 1       |
| 8    | ModSelL | Module Select                        |         |
| 9    | ResetL  | Module Reset                         |         |
| 10   | VccRx   | 3.3V Power Supply Receiver           | 2       |
| 11   | SCL     | 2-Wire serial Interface Clock        |         |
| 12   | SDA     | 2-Wire serial Interface Data         |         |
| 13   | GND     | Ground                               | 1       |
| 14   | Rx3p    | Receiver Non-Inverted Data Output    |         |

|    |           | duct Specification                   | <b>*/</b> |
|----|-----------|--------------------------------------|-----------|
| 15 | Rx3n      | Receiver Inverted Data Output        |           |
| 16 | GND       | Ground                               | 1         |
| 17 | Rxlp      | Receiver Non-Inverted Data Output    |           |
| 18 | Rxln      | Receiver Inverted Data Output        |           |
| 19 | GND       | Ground                               | 1         |
| 20 | GND       | Ground                               | 1         |
| 21 | Rx2n      | Receiver Inverted Data Output        |           |
| 22 | Rx2p      | Receiver Non-Inverted Data Output    |           |
| 23 | GND       | Ground                               | 1         |
| 24 | Rx4n      | Receiver Inverted Data Output        |           |
| 25 | Rx4p      | Receiver Non-Inverted Data Output    |           |
| 26 | GND       | Ground                               | 1         |
| 27 | ModPrsL   | Module Present                       |           |
| 28 | IntL      | Interrupt                            |           |
| 29 | VccTx     | 3.3V power supply transmitter        | 2         |
| 30 | Vccl      | 3.3V power supply                    | 2         |
| 31 | Init Mode | Initialization mode                  |           |
| 32 | GND       | Ground                               | 1         |
| 33 | Тх3р      | Transmitter Non-Inverted Data Input  |           |
| 34 | Tx3n      | Transmitter Inverted Data Output     |           |
| 35 | GND       | Ground                               | 1         |
| 36 | Txlp      | Transmitter Non-Inverted Data Input  |           |
| 37 | Txln      | Transmitter Inverted Data Output     |           |
| 38 | GND       | Ground                               | 1         |
| 39 | GND       | Ground                               | 1         |
| 40 | Tx6n      | Transmitter Inverted Data Input      |           |
| 41 | Тх6р      | Transmitter Non-Inverted Data output |           |
| 42 | GND       | Ground                               | 1         |
| 43 | Tx8n      | Transmitter Inverted Data Input      |           |
| 44 | Тх8р      | Transmitter Non-Inverted Data output |           |
| 45 | GND       | Ground                               | 1         |
| 46 | Reserved  | For Future Use                       | 3         |
| 47 | VS1       | Module Vendor Specific 1             | 3         |
| 48 | VccRx1    | 3.3V Power Supply                    | 2         |
| 49 | VS2       | Module Vendor Specific 2             | 3         |
| 50 | VS3       | Module Vendor Specific 3             | 3         |
| 51 | GND       | Ground                               | 1         |
| 52 | Rx7p      | Receiver Non-Inverted Data Output    |           |
| 53 | Rx7n      | Receiver Inverted Data Output        |           |
| 54 | GND       | Ground                               | 1         |
| 55 | Rx5p      | Receiver Non-Inverted Data Output    |           |
| 56 | Rx5n      | Receiver Inverted Data Output        |           |
| 57 | GND       | Ground                               | 1         |
| 58 | GND       | Ground                               | 1         |
| 59 | Rx6n      | Receiver Inverted Data Output        |           |
| 60 | Rx6p      | Receiver Non-Inverted Data Output    |           |
|    | <u> </u>  | ·                                    | _         |

1

GND

Ground


61

#### VD-4CFR4CS-AA Product Specification

| 101 | 100 7071100 | idot opoomodion                     |   |
|-----|-------------|-------------------------------------|---|
| 62  | Rx8n        | Receiver Inverted Data Output       |   |
| 63  | Rx8p        | Receiver Non-Inverted Data Output   |   |
| 64  | GND         | Ground                              | 1 |
| 65  | NC          | No Connect                          | 3 |
| 66  | Reserved    | For Future Use                      | 3 |
| 67  | VccTxl      | 3.3V power supply                   | 2 |
| 68  | Vcc2        | 3.3V power supply                   | 2 |
| 69  | Reserved    | For Future Use                      | 3 |
| 70  | GND         | Ground                              | 1 |
| 71  | Тх7р        | Transmitter Non-Inverted Data Input |   |
| 72  | Tx7n        | Transmitter Inverted Data Output    |   |
| 73  | GND         | Ground                              | 1 |
| 74  | Тх5р        | Transmitter Non-Inverted Data Input |   |
| 75  | Tx5n        | Transmitter Inverted Data Output    |   |
| 76  | GND         | Ground                              | 1 |
|     |             |                                     |   |

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, VccRx, VccRx, VccI, Vcc2, VccTx and VccTxl shall be applied concurrently. VccRx, VccRxl, VccI, Vcc2, VccTx and VccTxl may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000mA.
- 3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and reserved pads shall have an impedance to GND that is greater than 10 kohms and less than 100pF.

#### **Mechanical Dimension**





## **Revision History**

| Date       | Rev | Description             |
|------------|-----|-------------------------|
| 12/21/2021 | 1.0 | Release version         |
| 02/12/2025 | 2.0 | New branding guidelines |

#### For more information

**Vitex LLC** 32 Mercer St 201-296-0145

Hackensack, NJ 07601 info@vitextech.com

www.vitextech.com

