

400G QSFP28-DD SR8 Optical Transceiver PN: VD-4CSR8CP-AA

Product Overview

Vitex VD-4CSR8CP-AA is designed for 400G optical connections of up to 70m on OM3 and 100m using OM4 or OM5 MMF cables. The transceiver is a fully integrated optical transceiver using an eight channel VCSEL array and eight channel PIN photodiode array to operate at 425 Gbps. They are compliant with QSFP-DD MSA and IEEE 802.3cd 400GBASE-SR8 standards.

Features

- Compliant with IEEE Std 802.3cd, 400GBASE-SR8 Ethernet
- Compliant with QSFP-DD MSA
- Compliant with QSFP-DD Management interface specifications
- MPO16 APC Male connector receptacle
- 8 channels 850nm VCSEL array
- 8 channels PIN photo detector array
- Up to 425Gb/s data rates
- Single +3.3V power supply
- Commercial operating temperature: 0 °C to 70 °C
- Up to 70m on OM3 MMF and 100m on OM4 or OM5 MMF
- Support breakout application
- RoHS Compliant

Applications

- 400G BASE-SR8 Ethernet
- Data Center

Ordering Information

Part Number	Description
VD-4CSR8CP-AA	400G QSFP28-DD SR8, 100m MMF, 850nm, MPO16, C-temp

General Specifications

Parameter	Symbol	Min	Typical	Max	Unit	
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	15		85	%	
Supply Voltage (Maximum)	Vcc	-0.5		4.0	V	
Supply Voltage (Recommended)	Vcc	3.135	3.3	3.465	V	
Operating Case Temperature	TC	0		70	°C	
Data Rate PER Channel			53.125		Gbps	
Modulation Format	PAM4					

^{1.} Internally AC coupled, but requires a external 100 $\!\Omega$ differential load termination.

Optical - Transmitter

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Launch Optical Power	Ро	-6.5		+4	dBm	1
OMAouter	OMA	-4.5		+3	dBm	
Center Wavelength Range	λς	840	850	860	nm	
Extinction Ratio	EX	3			dB	2
Spectral width (RMS)	Δλ			0.6	nm	
Transmitter and Dispersion for PAM4	TDECQ			4.5	dB	2
Average Launch Power of OFF transmitter	Poff			-30	dBm	
Optical Return Loss Tolerance	ORLT			12	dB	
TX Disable Assert Time	Toff			100	ms	
TX Disable De-assert Time	Ton	· · · · · · · · · · · · · · · · · · ·		400	ms	

^{2.} The optical power is launched into OM3 MMF.

^{3.} Measured with a SSPRQ test pattern @ 53.125Gb/s PAM4 format.

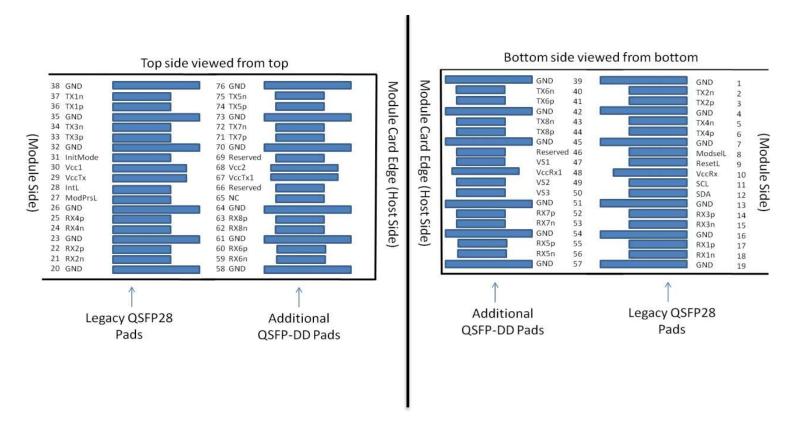
Optical – Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Center Wavelength	λς	840	850	860	nm	
Receiver Sensitivity (Poma)	S			-6.5	dBm	1
Receiver Overload (Pavg)	POL	4		dBm		
Damage Threshold	POL	5		dBm		
Optical Reflectance	ORL		-12	dB		
LOS De-Assert	LOS _D		-9	dBm		
LOS Assert	LOSA	-30		dBm		
LOS Hysteresis		0.5		dB		

^{1.} Measured with PRBS31Q test pattern, 53.125GBd, PAM4, BER<2.4E⁻⁴.

Electrical – Transmitter

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Module Supply Current	lcc			2.5	Α	
Power Dissipation	PD			8.0	W	
Input Differential Impedance	Z _{IN}		100		Ω	
Differential Data Input Swing	V _{IN, P-P}	180		900	mV _{P-P}	
Transition Time (20% to 80%)	Tr,Tf			34	ps	


Electrical - Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Output Differential Impedance	Zo		100		Ω	
Differential Data Output Swing	Vout, P-P	300		850	mV _{P-P}	1

^{1.} Internally AC coupled but requires an external 100 $\!\Omega$ differential load termination.

Electrical Connector Layout

Electrical Pin Definition

PIN#	Symbol	Description	Remarks
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Тх2р	Transmitter Non-Inverted Data output	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Тх4р	Transmitter Non-Inverted Data output	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	

D-4CS	RX3n	duct Specification	
16	GND	Receiver Inverted Data Output Ground	1
17	Rxlp	Receiver Non-Inverted Data Output	I
18	RxIn	Receiver Inverted Data Output Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	<u> </u>
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	<u>'</u>
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	<u> </u>
28	IntL	Interrupt	
29	VccTx	3.3V power supply transmitter	2
30	Vccl	3.3V power supply	2
31	Init Mode	Initialization mode	2
32	GND	Ground	1
33	Тх3р	Transmitter Non-Inverted Data Input	<u> </u>
34	Tx3n	Transmitter Inverted Data Output	
35	GND	Ground	1
36	Txlp	Transmitter Non-Inverted Data Input	'
37	Txln	Transmitter Inverted Data Output	
38	GND	Ground	1
39	GND	Ground	1
40	Tx6n	Transmitter Inverted Data Input	'
41	Тх6р	Transmitter Non-Inverted Data output	
42	GND	Ground	1
43	Tx8n	Transmitter Inverted Data Input	
44	Тх8р	Transmitter Non-Inverted Data output	
45	GND	Ground	1
46	Reserved	For Future Use	3
47	VSI	Module Vendor Specific 1	3
48	VccRx1	3.3V Power Supply	2
49	VS2	Module Vendor Specific 2	3
50	VS3	Module Vendor Specific 3	3
51	GND	Ground	1
52	Rx7p	Receiver Non-Inverted Data Output	
53	Rx7n	Receiver Inverted Data Output	
54	GND	Ground	1
55	Rx5p	Receiver Non-Inverted Data Output	
56	Rx5n	Receiver Inverted Data Output	
57	GND	Ground	1
58	GND	Ground	1
59	Rx6n	Receiver Inverted Data Output	

1

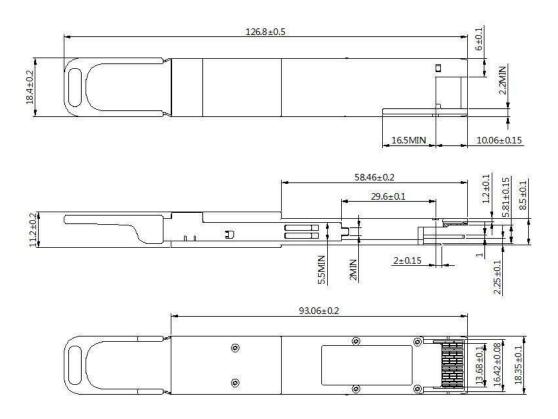
Receiver Non-Inverted Data Output

Rx6p

GND

Ground

60


61

VD-4CSR8CP-AA Product Specification

62	Rx8n	Receiver Inverted Data Output	
63	Rx8p	Receiver Non-Inverted Data Output	
64	GND	Ground	1
65	NC	No Connect	3
66	Reserved	For Future Use	3
67	VccTxl	3.3V power supply	2
68	Vcc2	3.3V power supply	2
69	Reserved	For Future Use	3
70	GND	Ground	1
71	Тх7р	Transmitter Non-Inverted Data Input	
72	Tx7n	Transmitter Inverted Data Output	
73	GND	Ground	1
74	Тх5р	Transmitter Non-Inverted Data Input	
75	Tx5n	Transmitter Inverted Data Output	
76	GND	Ground	1

^{1.} QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

Mechanical Dimension

^{2.} VccRx, VccRx, VccRx, VccI, Vcc2, VccTx and VccTxl shall be applied concurrently. VccRx, VccRxl, VccI, Vcc2, VccTx and VccTxl may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000mA.

^{3.} All Vendor Specific, Reserved and No Connect pins may be terminated with 50ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and reserved pads shall have an impedance to GND that is greater than 10kohms and less than 100pF.

Revision History

Date	Rev	Description
08/26/2021	1.0	Release version
02/13/2025	2.0	New branding guidelines

For more information

Vitex LLC 32 Mercer St 201-296-0145

Hackensack, NJ 07601 info@vitextech.com www.vitextech.com

