

800G QSFP-DD 2DR4++/LR4 Optical Transceiver PN: VD-8CLR4CP-AA

Product Overview

Vitex VD-8CLR4CP-AA is designed for use in 800G network applications, with a maximum transmission distance of 10km. It is a fully integrated optical transceiver modulated using a 4-level pulse amplitude modulation (PAM4) format that transmits and receives optical signals at 850 Gbps over 8 lanes, 1310nm each, running at 106.25 Gbps. They are compliant with the QSFP-DD MSA and 100GBASE-LR1 standards.

Features

- Compliant with IEEE Std 802.3cu 100GBASE-LR1
- Compliant with QSFP-DD MSA
- 5nm DSP for low power dissipation: <14W
- Compliant with CMIS5.0 Management interface specifications
- Dual MPO-12 receptacles
- Cooled 1310nm EML laser
- 8 x 53.125GBd PAM4 electrical interface
- Transmission distance up to 10km SMF
- Single +3.3V power supply
- Commercial operating temperature: 0 °C to 70 °C
- RoHS Compliant

Applications

- 2 x 400G-DR4++
- 8 x 100GBASE-LR1 Ethernet
- Data Center

Ordering Information

Part Number	Description
VD-8CLR4CP-AA	800G QSFP-DD 2DR4++/LR4, 10km SMF, 1310nm, Dual MPO12, C-temp

General Specifications

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	0		85	%	
Supply Voltage (Maximum)	V _{CC}	-0.5		3.6	V	
Operating Case Temperature	Tc	0	25	70	°C	
Supply Voltage (Recommended)	Vcc	3.135	3.3	3.465	V	
Data Rate PER Channel			53.125		GBd	
Modulation format	PAM4					

Optical - Transmitter

Parame	eter	Symbol	Min	Typical	Max	Unit	Remarks
Lane wavelengths	λ	1304.5		1317.5	nm	1	
Side-mode suppression	ratio	SMSR	30			dB	2
Average launch power, e	ach lane	Р	-1.9		4.8	dBm	3
Outer Optical	TDECQ<1.4dB		1.1		5	dBm	3
Modulation Amplitude, each lane	1.4dB≤TDECQ≤3.4dB	OMAouter	-0.3+ TDECQ		5	dBm	3
Transmitter and dispersion penalty eye closure for PAM4, each lane		TDECQ			3.4	dB	4
Transmitter eye closure for PAM4(TECQ), each lane		TECQ			3.4	dB	
TDECQ-TECQ					2.5	dB	
Extinction Ratio		ER	3.5			dB	4
Average launch power of OFF transmitter		Poff			-15	dBm	
Optical Return Loss Tolerance		ORLT			15.6	dB	
Transmitter reflectance					-26	dB	

^{1. 13}nm width.

^{2.} Modulated.

^{3.} Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.

^{4. 106.25}Gbps PAM4.

Optical - Receiver

Parameter		Symbol	Min	Typical	Max	Unit	Remarks
Lane wavelengths		λ	1304.5		1317.5	nm	1
Receiver Sensitivity	TDECQ<1.4dB				-6.1	dBm	2
each lane (OMA outer)	1.4dB≤TDECQ≤3.4dB				-7.5+TECQ	dBm	2
for 1.4≤TDECQ≤3.4dB						dBm	2
Average Receiver Power,	Average Receiver Power, each lane		-8.2		4.8	dBm	
Receiver Overload, each	Receiver Overload, each lane (Pavg)		4.8			dBm	3
Damage Threshold, each	lane		5.8			dBm	
Receive power, each lane (OMAouter)		OMA			5	dBm	
Receiver Reflectance					-26	dB	
LOS De-Assert		LOSD			-10	dBm	4
LOS Assert		LOSA	-16			dBm	4
LOS Hysteresis			0.5			dB	

^{1. 13}nm width.

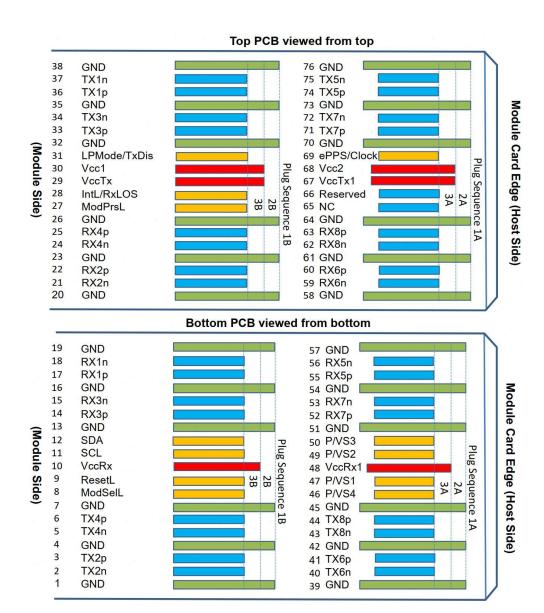
Electrical – Transmitter

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Module Supply Current	lcc			4.46	Α	
Power Dissipation	P _D			14	W	
Input Differential Impedance	Z _{IN}		100		Ω	
Differential Data Input Swing	V _{IN, P-P}			750	mV _{P-P}	

Electrical – Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
Output Differential Impedance	Zo		100		Ω	
Differential Data Output Swing	V _{OUT} , P-P			845	mV _{P-P}	1

^{1.} Internally AC coupled but requires an external 100 Ω differential load termination.


^{2. 106.25}Gbps@BER<2.4x10⁻⁴ and PRBS2³¹-1, per Channel.

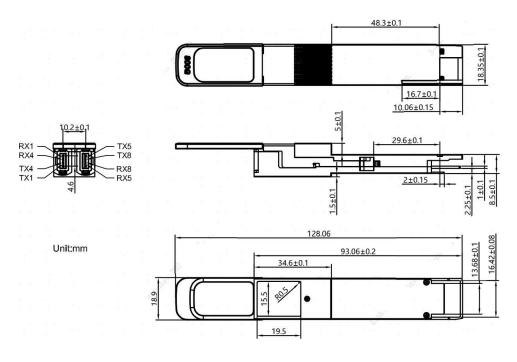
^{3.} Per Channel.

^{4.} Average power.

Electrical Connector Layout

Electrical Pin Definition

PIN#	Symbol	Description	Remarks
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Тх4р	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	VccRx	3.3V Power Supply Receiver	2
11	SCL	2-Wire serial Interface Clock	
12	SDA	2-Wire serial Interface Data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rxlp	Receiver Non-Inverted Data Output	
18	Rxîn	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL/RxLOS	Interrupt/optional RxLOS	
29	VccTx	3.3V power supply transmitter	2
30	Vccl	3.3V power supply	2
31	LPMode/TxDis	Low Power mode/optional TX Disable	
32	GND	Ground	1
33	Тх3р	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Txlp	Transmitter Non-Inverted Data Input	
37	Txln	Transmitter Inverted Data Input	
38	GND	Ground	1
39	GND	Ground	1
40	Tx6n	Transmitter Inverted Data Input	
41	Тх6р	Transmitter Non-Inverted Data Input	
42	GND	Ground	1


VD-8CLR4CP-AA Product Specification

VD CCL	NTOI AATIOA	act opcomodulori	
43	Tx8n	Transmitter Inverted Data Input	
44	Тх8р	Transmitter Non-Inverted Data Input	
45	GND	Ground	1
46	P/VS4	Programmable/Module Vendor Specific 4	4
47	P/VS1	Programmable/Module Vendor Specific 1	4
48	VccRx1	3.3V Power Supply	2
49	P/VS2	Programmable/Module Vendor Specific 2	4
50	P/VS3	Programmable/Module Vendor Specific 3	4
51	GND	Ground	1
52	Rx7p	Receiver Non-Inverted Data Output	
53	Rx7n	Receiver Inverted Data Output	
54	GND	Ground	1
55	Rx5p	Receiver Non-Inverted Data Output	
56	Rx5n	Receiver Inverted Data Output	
57	GND	Ground	1
58	GND	Ground	1
59	Rx6n	Receiver Inverted Data Output	
60	Rx6p	Receiver Non-Inverted Data Output	
61	GND	Ground	1
62	Rx8n	Receiver Inverted Data Output	
63	Rx8p	Receiver Non-Inverted Data Output	
64	GND	Ground	1
65	NC	No Connect	3
66	Reserved	For Future Use	3
67	VccTx1	3.3V power supply	2
68	Vcc2	3.3V power supply	2
69	ePPS/Clock	1PPS PTP clock or reference clock input	5
70	GND	Ground	1
71	Тх7р	Transmitter Non-Inverted Data Input	
72	Tx7n	Transmitter Inverted Data Input	
73	GND	Ground	1
74	Тх5р	Transmitter Non-Inverted Data Input	
75	Tx5n	Transmitter Inverted Data Input	
76	GND	Ground	1

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane. Each connector GND contact is rated for a steady state current of 500mA.
- 2. VccRx, VccRx, VccI, Vcc2, VccTx and VccTxl shall be applied concurrently. Supply requirements defined for the host side of the Host Card Edge Connector are listed in Table 13. For power classes 4 and above the module differential loading of input voltage pads must not result in exceeding contact current limits. Each connector Vcc contact is rated for a steady state current of 1500mA.
- 3. Reserved pad recommended to be terminated with 10 kM to ground on the host. Pad 65 (No Connect) Shall be left unconnected within the module, optionally pad 65 may get terminated with 10 kM to ground on the host.
- 4. Full definitions of the P/VSx signals currently under development. For module designs using programmable/vendor specific inputs P/VS1 and P/VS4 signals it is recommended each to be terminated in the module with 10 km For host designs using programmable/vendor specific outputs P/VS2 and P/VS3 signals it is recommended each to be terminated on the host with 10 km
- 5. For host not implementing ePPS/Clock, it is not necessary to parallel terminate the ePPS/Clock signal to ground on the host. ePPS/Clock already has parallel termination in the module.

Mechanical Dimension

Revision History

Date	Rev	Description
04/09/2023	1.0	Release version
02/13/2025	2.0	New branding guidelines

For more information

Vitex LLC

32 Mercer St Hackensack, NJ 07601 201-296-0145 info@vitextech.com www.vitextech.com

