

100G QSFP28 ER4 Lite Optical Transceiver PN: VO-1CER4CS-BA

Product Overview

Vitex VQ-1CER4CS-BA is designed for 100G Ethernet optical communication applications over a single-mode fiber cable. They are compliant with the QSFP28 MSA, 100GBASE-ER4 Lite standards. The digital diagnostic functions are available via the I2C interface.

Features

- Compliant with 100G Ethernet ER4 Lite
- Compliant with QSFP28 MSA
- 4 cooled 25Gb/s channels LAN WDM EML TOSA
- 4 channels APD photo detector
- Single +3.3V power supply
- Class 1 laser safety certified
- Power consumption less than 4.5W
- Commercial operating temperature: 0 °C to 70°C
- Up to 30km on SMF without FEC / 40km with FEC
- Duplex LC connector
- RoHS Compliant

Applications

- Data Center
- 100G BASE-ER4 Lite Ethernet

Ordering Information

Part Number	Description
VQ-1CER4CS-BA	100G QSFP28 ER4 Lite, 30km SMF, 1310nm, Duplex-LC, C-temp

General Specifications

Parameter	Symbol	Min	Typical	Max	Unit	
Storage Temperature	Ts	-40		+85	°C	
Relative Humidity	R _H	5		95	%	
Supply Voltage (Maximum)	V _{cc}	-0.5		4.0	V	
Supply Voltage (Recommended)	Vcc	3.135	3.3	3.465	V	
Operating Case Temperature	TC	0	25	70	°C	
Data Rate PER Channel			25.78125		Gbps	

Optical – Transmitter

Symbol	Min	Typical	Max	Unit	Remarks
Ро	-2.9		+2.9	dBm	1
Ро			+8.9	dBm	1
Ll	1294.53	1295.56	1296.59	nm	
L2	1299.02	1300.05	1301.09	nm	
L3	1303.54	1304.58	1305.63	nm	
L4	1308.09	1309.14	1310.19	nm	
EX	8.0			dB	2
Δλ			1.0	nm	
SMSR	30.0			dB	
ORLT			20.0	dB	
Poff			-30.0	dBm	1
e Mask {X1, X2, X3, Y1, Y2, Y3} {0.25, 0.4, 0.45, 0.25, 0.28, 0.4}			1		
	Po Po L1 L2 L3 L4 EX Δλ SMSR ORLT	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } \hline Po & -2.9 & & \\ \hline Po & & & \\ \hline Po & & & \\ \hline 11 & 1294.53 & 1295.56 & \\ \hline 12 & 1299.02 & 1300.05 & \\ \hline 130 & 1303.54 & 1304.58 & \\ \hline 130 & 1308.09 & 1309.14 & \\ \hline 1308.09 & 1309.14 & \\ \hline EX & 8.0 & & \\ \hline 0A\lambda & & & \\ \hline SMSR & 30.0 & & \\ \hline ORLT & & & \\ \hline P_{off} & & & \\ \end{array}$	$\begin{array}{c c c c c c c c } \hline Po & -2.9 & +2.9 \\ \hline Po & +8.9 \\ \hline 11 & 1294.53 & 1295.56 & 1296.59 \\ \hline L2 & 1299.02 & 1300.05 & 1301.09 \\ \hline L3 & 1303.54 & 1304.58 & 1305.63 \\ \hline L4 & 1308.09 & 1309.14 & 1310.19 \\ \hline L4 & 1308.09 & 1309.14 & 1310.19 \\ \hline EX & 8.0 & & \\ \hline \Delta\lambda & & 1.0 \\ \hline SMSR & 30.0 & & \\ \hline ORLT & & 20.0 \\ \hline P_{off} & & -30.0 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1. The optical power is launched into SMF.

2. Measured with a PRBS 231-1 test pattern, 25.78125Gb/s.

Optical – Receiver

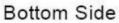
Parameter	Symbol	Min	Typical	Max	Unit	Remarks
	LI	1294.53	1295.56	1296.59	nm	
	L2	1299.02	1300.05	1301.09	nm	
Center Wavelength	L3	1303.54	1304.58	1305.63	nm	
	L4	1308.09	1309.14	1310.19	nm	
				-15.0	dBm	1
Sensitivity per Channel (OMA)	S			-18.5	dBm	2
Overload (each channel)	Pol	-3.5			dBm	1
Damage Threshold(each channel)	Pdamage	-2.5			dBm	
Receiver Reflectance	Rf			-26.0	dB	
LOS De-Assert	LOSD			-21.0	dB	
LOS Assert	LOSA	-26.0			dBm	
LOS Hysteresis		0.5			dB	

1. Measured with PRBS 2^{31} -1 test pattern, 25.78125Gb/s, BER 1.0E-12;

2. Measured with PRBS 2³¹-1 test pattern, 25.78125Gb/s, BER 5.0E-5.

Electrical – Transmitter

Parameter	Symbol	Min	Typical	Max	Unit
Module Supply Current	lcc			1350	mA
Power Dissipation	PD			4500	mW
Single-ended Input Voltage Tolerance		-0.3		4.0	V
Input Differential Impedance	Zin		100		Ω
Differential Data Input Swing	V _{IN, P-P}	190		700	тV _{P-P}
AC Common Mode Input Voltage Tolerance		15			mV
Differential Input Voltage Swing Threshold			50		mVpp

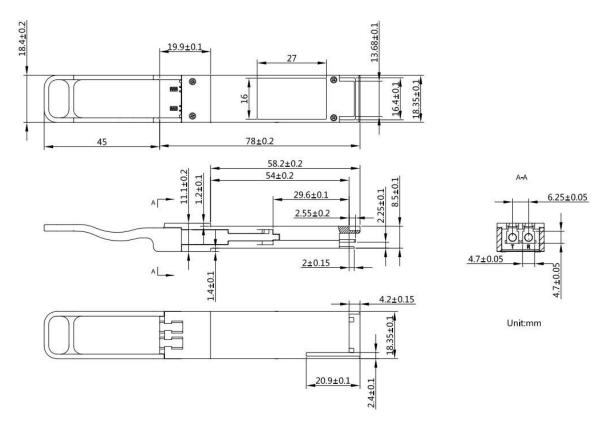

Electrical – Receiver

Parameter	Symbol	Min	Typical	Max	Unit
Single-ended Output Voltage		-0.3		4.0	V
Output Differential Impedance	Zo	90	100	110	Ω
Differential Data Output Swing	V _{OUT, P-P}	300		850	mV _{P-P}
AC Common Mode Output Voltage				7.5	mV

Electrical Connector Layout

Top Side

Electrical Pin Definition


PIN #	Symbol	Description	Remarks
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2-	Transmitter Inverted Data Input	
3	Tx2+	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4-	Transmitter Inverted Data Input	
6	Tx4+	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	2
9	ResetL	Module Reset	2
10	VccRx	3.3V Power Supply Receiver	
11	SCL	2-Wire serial Interface Clock	2
12	SDA	2-Wire serial Interface Data	2
13	GND	Transmitter Ground (Common with Receiver Ground)	1
14	Rx3+	Receiver Non-Inverted Data Output	
15	Rx3-	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1+	Receiver Non-Inverted Data Output	
18	Rx1-	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2-	Receiver Inverted Data Output	
22	Rx2+	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4-	Receiver Inverted Data Output	1
25	Rx4+	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	2
29	VccTx	3.3V power supply transmitter	
30	Vccl	3.3V power supply	
31	LPMode	Low Power Mode	2
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3+	Transmitter Non-Inverted Data Input	
34	Tx3-	Transmitter Inverted Data Output	
35	GND	Transmitter Ground (Common with Receiver Ground)	1
36	Txl+	Transmitter Non-Inverted Data Input	
37	Txl-	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1

1. The module signal grounds are isolated from the module case.

2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost

Mechanical Dimension

Revision History

Date	Rev	Description
02/07/2020	1.0	Release version
02/12/2025	2.0	New branding guidelines

For more information

Vitex LLC

32 Mercer St Hackensack, NJ 07601 201-296-0145 info@vitextech.com www.vitextech.com

