

100G QSFP28 ZR4 Optical Transceiver

PN: VQ-1CZR4CS-AA

Product Overview

Vitex VQ-1CZR4CS-AA is designed for 100G Ethernet connections over single-mode fiber. They are compliant with QSFP MSA and 100GBASE-ZR4 standards. Digital diagnostics functions are available via the I2C interface.

Features

- Compliant with QSFP28 MSA
- 4 cooled 25Gb/s channels LAN WDM EML TOSA
- 4 channels SOA PIN photo detector
- Single +3.3V power supply
- Class 1 laser safety certified
- Commercial operating temperature: 0 °C to 70°C
- Up to 80km on SMF with FEC
- Duplex LC connector
- RoHS Compliant

Applications

- Data Center
- 100G BASE-ZR4 Ethernet

Ordering Information

Part Number	Description
VQ-1CZR4CS-AA	100G QSFP28 ZR4, 80 km SMF, 1310nm, Duplex-LC, C-temp

General Specifications

Parameter	Symbol	Min	Typical	Max	Unit	
Storage Temperature	Ts	-40		+85	°C	
Relative Humidity	R _H	5		95	%	
Supply Voltage (Maximum)	Vcc	-0.5		4.0	V	
Supply Voltage (Operating)	Vcc	3.135	3.3	3.465	V	
Operating Case Temperature	Tc	0	25	70	°C	
Data Rate PER Channel			25.78125	28.05	Gbps	

Optical – Transmitter

Ро					Remarks
10	2.0		6.5	dBm	1
Ро			12.5	dBm	1
LI	1294.53	1295.56	1296.59	nm	
L2	1299.02	1300.05	1301.09	nm	
L3	1303.54	1304.58	1305.63	nm	
L4	1308.09	1309.14	1310.19	nm	
EX	8.0			dB	2
Δλ			1.0	nm	
SMSR	30.0			dB	
ORLT			20.0	dB	
Poff			-30.0	dBm	1
{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}					
	L1 L2 L3 L4 EX Δλ SMSR ORLT	L1 1294.53 L2 1299.02 L3 1303.54 L4 1308.09 EX 8.0 Δλ SMSR ORLT Poff	L1 1294.53 1295.56 L2 1299.02 1300.05 L3 1303.54 1304.58 L4 1308.09 1309.14 EX 8.0 Δλ ORLT	L1 1294.53 1295.56 1296.59 L2 1299.02 1300.05 1301.09 L3 1303.54 1304.58 1305.63 L4 1308.09 1309.14 1310.19 EX 8.0 10 1.0 SMSR 30.0 20.0 -30.0	L1 1294.53 1295.56 1296.59 nm L2 1299.02 1300.05 1301.09 nm L3 1303.54 1304.58 1305.63 nm L4 1308.09 1309.14 1310.19 nm EX 8.0 dB dB Δλ 1.0 nm SMSR 30.0 20.0 dB Poff -30.0 dBm -30.0

1. The optical power is launched into SMF.

2. Measured with a PRBS 231-1 test pattern, 25.78125Gb/s.

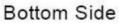
Optical – Receiver

Parameter	Symbol	Min	Typical	Max	Unit	Remarks
	LÌ	1294.53	1295.56	1296.59	nm	
	L2	1299.02	1300.05	1301.09	nm	
Center Wavelength	L3	1303.54	1304.58	1305.63	nm	
	L4	1308.09	1309.14	1310.19	nm	
Sensitivity per Channel (OMA)	SI			-26.9	dBm	1
Sensitivity per Channel (Average)	S2			-28.0		
Overload (each channel)	Pol	2.0			dBm	1
Damage Threshold (each channel)	Pdamage	4.5			dBm	
Receiver Reflectance	Rf			-26.0	dB	
LOS De-Assert	LOSD			-28.0	dB	
LOS Assert	LOSA	-35.0			dBm	
LOS Hysteresis		0.5		5.0	dB	

1. Measured with PRBS 231-1 test pattern, 25.78125Gb/s, BER 5.0E-5.


Electrical – Transmitter

Parameter	Symbol	Min	Typical	Max	Unit
Module Supply Current	lcc			1650	mA
Power Dissipation	PD			5500	mW
Single-ended Input Voltage Tolerance		-0.3		4.0	V
Input Differential Impedance	Zin		100		Ω
Differential Data Input Swing	VIN, P-P	190		700	mV _{P-P}
AC Common Mode Input Voltage Tolerance		15			mV
Differential Input Voltage Swing Threshold			50		mV _{p-p}

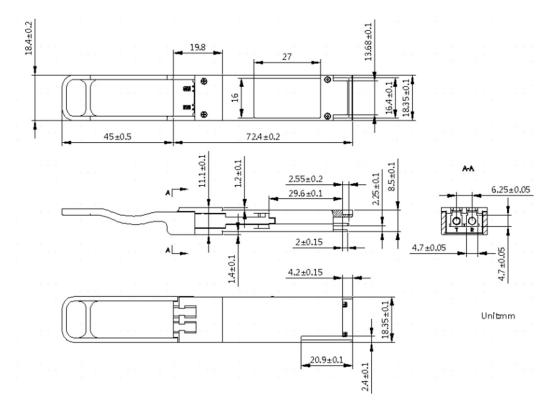

Electrical – Receiver

Parameter	Symbol	Min	Typical	Max	Unit
Single-ended Output Voltage		-0.3		4.0	V
Output Differential Impedance	Zo	90	100	110	Ω
Differential Data Output Swing	V _{OUT, P-P}	300		850	mV _{P-P}
AC Common Mode Output Voltage				7.5	mV

Electrical Connector Layout

Top Side

Electrical Pin Definition


PIN #	Symbol	Description	Remarks
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2-	Transmitter Inverted Data Input	
3	Tx2+	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4-	Transmitter Inverted Data Input	
6	Tx4+	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	2
9	ResetL	Module Reset	2
10	VccRx	3.3V Power Supply Receiver	
11	SCL	2-Wire serial Interface Clock	2
12	SDA	2-Wire serial Interface Data	2
13	GND	Transmitter Ground (Common with Receiver Ground)	1
14	Rx3+	Receiver Non-Inverted Data Output	
15	Rx3-	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1+	Receiver Non-Inverted Data Output	
18	Rx1-	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2-	Receiver Inverted Data Output	
22	Rx2+	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4-	Receiver Inverted Data Output	1
25	Rx4+	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	2
29	VccTx	3.3V power supply transmitter	
30	Vccl	3.3V power supply	
31	LPMode	Low Power Mode	2
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3+	Transmitter Non-Inverted Data Input	
34	Tx3-	Transmitter Inverted Data Output	
35	GND	Transmitter Ground (Common with Receiver Ground)	1
36	Tx1+	Transmitter Non-Inverted Data Input	
37	Txl-	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1

1. The module signal grounds are isolated from the module case.

2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost

Mechanical Dimension

Revision History

Date	Rev	Description
09/07/2020	1.0	Release version
02/12/2025	2.0	New branding guidelines

For more information

Vitex LLC 32 Mer Hacke

32 Mercer St Hackensack, NJ 07601 201-296-0145 info@vitextech.com www.vitextech.com

