

# 10G SFP RJ45 Copper Optical Transceiver VT-1030MxR-AA

### **Product Overview**

Vitex's VT-1030MxR, 10G SFP RJ45 Copper transceiver delivers a robust, cost-effective solution for highspeed Gigabit Ethernet connectivity. Designed to support 10GBASE-T operation in host systems, this transceiver enables reliable communication over Cat7 UTP cable up to 30 meters. They are designed for optimal performance in either commercial (0°C to 70°C) or industrial (-40°C to 85°C) environments.

#### Features

- Support 10GBASE-T Operation in Host Systems
- Support RX\_LOS as Link indication function
- Hot-Pluggable SFP Footprint
- Low power dissipation, Power Dissipation < 2.6W
- Compact RJ-45 connector assembly
- Compliant with MSA SFP Specification
- Operating temperature range (Case Temperature):
  - Commercial Level: 0°C to 70°C
  - Industrial Level: -40°C to 85°C

#### Applications

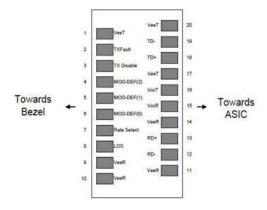
- 10G BASE-T IEEE 802.3an
- 10G BASE-T IEEE 802.3ab
- 10G BASE-TX IEEE 802.3u
- 5G MGBASE-T
- 2.5G MGBASE-T

### Ordering Information

| Part Number   | Description                                       |
|---------------|---------------------------------------------------|
| VT-1030MCR-AA | 10G SFP 30m 10G BASE-T, CAT7, RJ45 Copper, C-temp |
| VT-1030MIR-AA | 10G SFP 30m 10G BASE-T, CAT7, RJ45 Copper, I-temp |

# **General Specifications**

| Parameter                          | Symbol | Min  | Typical | Max  | Unit | Remarks |
|------------------------------------|--------|------|---------|------|------|---------|
| Storage Temperature                | Ts     | -40  |         | 85   | °C   |         |
| Maximum Supply Voltage             | Vcc    | -0.5 |         | 4    | V    |         |
| Operating Relative Humidity        | RH     |      |         | 95   | %    |         |
|                                    | Тс     | 0    |         | 70   | °C   | C-temp  |
| Operating Case Temperature         |        | -40  |         | 85   | °C   | I-temp  |
| Power Supply Voltage (Recommended) | Vcc    | 3.13 | 3.3     | 3.45 | V    |         |


# **Electrical Characteristics**

| Parameter                  | Symbol  | Min           | Typical        | Max           | Unit        | Notes                      |
|----------------------------|---------|---------------|----------------|---------------|-------------|----------------------------|
|                            |         | +3.3 Volt I   | Electrical Po  | wer Interface | Э           |                            |
| Supply Current             | ICC     |               |                | 800           | mA          |                            |
| Input Voltage              | Vcc     | 3.13          | 3.3            | 3.47          | V           |                            |
|                            | Low     | v-Speed Sigi  | nals, Electro  | nic Characte  | eristics    |                            |
| SFP Output LOW             | VOL     | 0             |                | 0.5           | V           | 1                          |
| SFP Output HIGH            | VOH     | Vcc-0.5       |                | Vcc+0.3       | V           | 1                          |
| SFP Input LOW              | VIL     | 0             |                | 0.8           | V           | 2                          |
| SFP Input HIGH             | VIH     | 2             |                | Vcc+0.3       | V           | 2                          |
|                            | High-Sp | beed Electric | al Interface,  | , Transmissic | on Line-SFP |                            |
| Tx Output impedance        | Zout,TX |               | 100            |               | Ohm         |                            |
| Rx Input Impedance         | Zin,RX  |               | 100            |               | Ohm         |                            |
|                            | ŀ       | ligh-Speed I  | Electrical Int | erface, Host  | -SFP        |                            |
| CML Inputs (Differential)  | Vin     | 250           |                | 1200          | mV          | AC coupled inputs          |
| CML Outputs (Differential) | Vout    | 350           |                | 800           | mV          | CML Outputs (Differential) |
| Rise/Fall Time             | Tr,Tf   |               | 20             |               |             | 20%-80%                    |
| Tx Input Impedance         | Zin     |               | 50             |               | Ohm         | Differential ended         |
| Rx Output Impedance        | Zout    |               | 50             |               | Ohm         | Differential ended         |

1. 4.7k to 10k pull-up to host\_Vcc, measured at host side of connector

2. 4.7k to 10k pull-up to Vcc, measured at SFP side of connector

# **Electrical Connector Layout**





### **Electrical Pin Definition**

| PIN # | Symbol      | Description                  | Plug<br>Sequence   | Remarks                            |  |
|-------|-------------|------------------------------|--------------------|------------------------------------|--|
| 1     | VeeT        | Transmitter Ground           | 1                  | 5                                  |  |
| 2     | TX Fault    | Transmitter Fault Indication | 3                  | 1                                  |  |
| 3     | TX Disable  | Transmitter Disable          | 3                  | 2) Module disables on high or open |  |
| 4     | MOD-DEF2    | Module Definition 2          | 3                  | 3) 2 wire serial ID interface.     |  |
| 5     | MOD-DEF1    | Module Definition 1          | 3                  | 3) 2 wire serial ID interface.     |  |
| 6     | MOD-DEF0    | Module Definition 0          | 3                  | 3) Grounded within the module.     |  |
| 7     | Rate Select | Not Connect                  | 3                  | Function not available             |  |
| 8     | LOS         | Loss of Signal               | 3                  | 4                                  |  |
| 9     | VeeR        | Receiver Ground              | 1                  | 5                                  |  |
| 10    | VeeR        | Receiver Ground              | 1                  | 5                                  |  |
| 11    | VeeR        | Receiver Ground              | 1                  | 5                                  |  |
| 12    | RD-         | Inv. Received Data Out       | 3                  | 6                                  |  |
| 13    | RD+         | Received Data Out            | 3                  | 7                                  |  |
| 14    | VeeR        | Receiver Ground              | 1                  | 5                                  |  |
| 15    | VccR        | Receiver Power               | 2                  | 7) 3.3 ± 5%                        |  |
| 16    | VccT        | Transmitter Power            | 2                  | 7) 3.3 ± 5%                        |  |
| 17    | VeeT        | Transmitter Ground           | ansmitter Ground 1 |                                    |  |
| 18    | TD+         | Transmit Data In             | 3                  | 8                                  |  |
| 19    | TD-         | Inv. Transmit Data In        | 3                  | 8                                  |  |
| 20    | VeeT        | Transmitter                  | 1                  | 5                                  |  |

1. TX Fault is an open collector/drain output, which should be pulled up with a  $4.7-10K\Omega$  resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

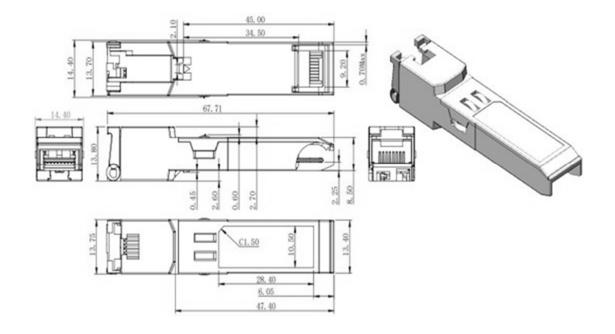
TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7-10K  $\Omega$  resistor. Its states are:

- a. Low (0 0.8V): Transmitter on
- b. (>0.8, < 2.0V): Undefined
- c. High (2.0 3.465V): Transmitter Disabled
- d. Open: Transmitter Disabled

Mod-Def 0,1,2. These are module definition pins. They should be pulled up with a 4.7–10KΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.

- a. Mod-Def 0 is grounded by the module to indicate that the module is present.
- b. Mod-Def 1 is the clock line of two wire serial interface for serial ID;
- c. Mod-Def 2 is the data line of two wire serial interface for serial ID.

4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7–10KΩ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver Sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.</p>


- 5. VeeR and VeeT may be internally connected within the SFP module.
- RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential Lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 400 and 2000mV differential (200 –1000mV single ended) when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an in-rush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 differential terminations inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400 2000mV (200 1000mV single-ended).

2.

3



# **Electrical Connector Layout**



# **Revision History**

| Date       | Rev | Description             |
|------------|-----|-------------------------|
| 09/06/2017 | 1.0 | Release version         |
| 02/21/2025 | 2.0 | New branding guidelines |

# For more information

Vitex LLC

32 Mercer St. Hackensack, NJ 07601 201-296-0145 info@vitextech.com www.vitextech.com

